
MODULAR ARCHITECTURE FOR ROBUST COMPUTING (MARC)

Session: Onboard equipment and software

Short Paper

Alan Senior & Philip Ireland

Systems Engineering & Assessment Ltd
Stuart D. Fowell & Roger Ward

SciSys UK Ltd
Dr. Omar Emam & Dr. Ben Greene

EADS Astrium Ltd
E-mail: alan.senior@sea.co.uk, philip.ireland@sea.co.uk, stuart.fowell@scisys.co.uk,

roger.ward@scisys.co.uk, omar.emam@astrium.eads.net,
benjamin.greene@astrium.eads.net

ABSTRACT
This paper describes the Modular Architecture for Robust Computing (MARC)
concept, a modular processing system that is interconnected by a SpaceWire network.
Additional processing, memory or IO modules may be added to improve system
availability and/or performance. Future tests on the demonstration system will verify
the FDIR system analysis and performance predictions.

The hardware architecture is closely coupled to the software aims of Generic Fault-
tolerant Software Architecture using SOIS (GenFAS) software framework, which
allows software builds to be allocated to available processor modules, and re-allocated
in the event of a failed processor module, enabling a reduced amount of redundant
processing modules through an n+m rather than 2n provision.

1 INTRODUCTION
The aim of the Modular Architecture for Robust Computing (MARC) project is to
demonstrate the essential features of a heterogeneous, fault tolerant, high availability
distributed avionics system based on a SpaceWire network, to a point where it is
considered to be a Product that is “one-step-from-flight”.

The derived MARC architecture must provide a scalable solution that can meet the
demanding needs of future missions. For example, the SpaceWire network
architecture must be scalable to include new functions and to provide duplicate paths
to achieve the level of redundancy needed for a particular mission.

An important aspect of the demonstrator hardware is that the key components are
space qualifiable parts; permitting the design to be upgraded to a fully space qualified
system with minimal changes. Similarly the existing GenFAS OBSW software
framework will be upgraded to a Product in accordance with space qualified software

mailto:alan.senior@sea.co.uk
mailto:philip.ireland@sea.co.uk
mailto:stuart.fowell@scisys.co.uk
mailto:roger.ward@scisys.co.uk
mailto:omar.emam@astrium.eads.net
mailto:benjamin.greene@astrium.eads.net

standards (ECSS-E-40) and implementing the Spacecraft Onboard Interface Services
(SOIS) communication standards as mapped onto SpaceWire.

The main applications foreseen for this architecture include missions requiring
extensive distributed fault-tolerant on-board processing capabilities, such as advanced
payload data processing systems and highly autonomous space exploration systems.
To that end, an additional key objective is to demonstrate the applicability of the
MARC architecture to the ExoMars Rover CDMS and PDHS and show that it can
provide a viable solution option.

The FDIR handling features and associated test and validation shall be focused on the
robustness of the SpaceWire network and its ability to reliably provide a medium for
distributing both data and commands. The integrity of the commanding infrastructure
is assessed in terms of guaranteed delivery and response while still complying with
the stringent requirements imposed on command delivery, detection and execution
latency by time critical embedded systems used for space applications. It is
anticipated that the outcome of the MARC FDIR and system performance testing will
show that the SpaceWire can be used alone to communicate critical data and
commands and in principle replace the traditional methods of command and control
distribution such as MIL-STD-1553B.

2 HARDWARE ARCHITECTURE

As above

Power Supply

Power switching
and

Watchdog

Active Backplane

As above

Spare PCB slot

Processor 1

Processor 2

Mass Memory 1

Mass Memory 2

Atmel
LEON2 16Gb RAM

Actel
ProASIC 3

FPGA

Atmel
3 channel

SpaceWire
ASIC

Actel
ProASIC 3

FPGA

64Gb RAM

64Gb FLASH

Spare PCB slot

Spare PCB slot

Spare PCB slot

2 Spare SpaceWire
ports (minimum)

8 Port
Router

8 Port
Router

8 Port
Router

8 Port
Router

SpaceWire
USB Brick

PC configured with
software

development tools
and a fault injection

test application

Demonstrator system rack

1 Spare
SpaceWire port

1 Spare
SpaceWire port

2 Spare
SpaceWire ports

2 Spare
SpaceWire ports

Mains power in

Monitoring LEDs

Control switches

Boot PROM

MARC
Demonstrator

Hardware

Reconfiguration
controller

LEON2
debug port

Figure 1: MARC Demonstrator Hardware Block Diagram

Figure 1 is a block diagram of the proposed MARC demonstrator system; it comprises
the following principal functions:

• MARC rack containing the modules, backplane and power supply

• EGSE PC loaded with support tools software development and control of the
hardware fault injection facilities

• USB brick to interface between the EGSE PC and the MARC rack

The developed modules for the demonstration rack are anticipated to be be:

• A Core Computing Module based on the LEON2 processor

• A 128Gb Mass Memory module incorporating an 8-port SpaceWire Router

• An active backplane incorporating 8-port SpaceWire Routers, power switching
and a reconfiguration controller

Spare SpaceWire ports and spare module slots will be provided to permit expansion of
the demonstrator at a future date. The Active Backplane incorporates three 8-port
SpaceWire Routers. Of the 24 available SpaceWire ports on the backplane, 6 will be
used to connect the routers together, leaving 16 available for the 8 backplane PCB
slots with the remaining 2 for the spare external SpaceWire ports.

3 FAULT TOLERANT SOFTWARE

SOIS Application Support Layer

File ServicesCommand & Data Acquisition
Services

SOIS Sub-Network Layer

Physical Layer

Network Initialisation
& Configuration CPU RM Timer UART

SFGM
SpaceWire
TimeCode
Register

EDAC Watchdog

Data Link Layer SpW Driver

Protocol Multiplexing Prioritisation

Packet
Transfer
Service

Get/Set
Service

Memory
Access
Service

Time
Distribution

Service

Device
Discovery
Service

Test
Service

SOIS Transfer Layer

Message
Transfer
Service

Device
Access
Service

Device Data
Pooling
Service

Device
Virtualisation

Service

File
Transfer
Service

File
Management

Service

File
Access
Service

Time
Access
Service

N
etwork M

anagem
ent Services

Hard Real-Tim
e O

peration System
BS

P
Boot Loader

Transport Protocol

Network Protocol

System Functions and
Common Application Services
Layer

Mode
Manager

PUS
Services

FDIR
Manager

Configuration
Manager

User Applications

Figure 2: GenFAS Architecture

The Generic Fault-tolerant Architecture using SOIS (GenFAS) [2] is a distributed
software framework for Onboard Software (OBSW) applications, implemented to
ECSS-E-40 standards [3]. It is deployed upon the processing modules of the MARC
demonstrator, has an architecture illustrated in figure 2 and provides the following
features:

• decentralised, distributed OBSW – PUS Services [4] and a Data Pool are
provided to OBSW applications that may be located upon any processing
module in the MARC system. For example, TC packets are routed to the
destination application based on APIDs and carried using the SOIS services
[5] mapped onto SpaceWire protocols [6].

• decentralised, distributed access to instruments and transducers – all
instruments and transducers are attached either directly to the SpaceWire
network or via IO modules and are accessed by applications running on any
processing module using the SOIS service libraries mapped onto SpaceWire
protocols. Because of this an application running on any processing module
has access to all instruments and transducers.

• advanced mass memory architecture – GenFAS implements the User
libraries and System Controller of the MAGUS architecture [7]. This provides
access control to different mass memory partitions held on Mass Memory
modules, with the following partition types supported: File System, Packet
Store, FIFO Buffer, Linked List and Raw Buffer. The Mass Memory modules
are accessed using the SOIS services mapped onto the SpaceWire RMAP
protocol [8].

• fault-tolerance – This implements an n+m redundancy approach to
processing modules (n nominal processors and m redundant processors) rather
than the traditional 2n approach. It relies upon and takes advantage of the
other features of GenFAS – distributed software and universal access to all
features using the SpaceWire network. OBSW Applications are linked
together into a validated software build to be deployed together on a
processing module. Each software build is stored within a build repository in
the System Context area of Mass Memory. Upon start-up of the system, each
software build is allocated by the GenFAS Configuration Manager to an
available processing module of the appropriate type (it is assumed that there
may be a small number of different types of processing modules, e.g. Leon2
and PowerPC), downloaded from Mass Memory and executed. Those
processing modules not required to run the builds are held as a pool of spared.
Should the processing module fail, the FDIR Manager will detect the failure
and instruct the Configuration Manager to re-deploy the software build on one
of the spare processing modules, i.e. a spare processing module is assigned to
load the software build from Mass Memory and execute it.

4 FDIR ANALYSIS AND PERFORMANCE
The FDIR activity requires that the hardware provides facilities for the detection of
faulty modules, containment of faults to a module and control over nominal and
redundant functions. The details of the required level of fault monitoring are one of
the main tasks in the initial phase of the project. The hardware will provide voltage
level monitoring, watchdog timers and control to disable functions. The balance of
software and autonomous hardware control of the system is an aspect that needs to be
addressed within the project.

It is anticipated that the majority of the FDIR functionality will be implemented in
software, where an adaptable decision making process can be supported. There
should also be some hardware only FDIR mechanisms as it is anticipated that there
will be credible failure modes that may stop processors and hence software from
running. It is anticipated that there will be circumstances where it is desirable to stop
all software from running and to diagnose and mitigate failures via TM/TC actions.

Two approaches will be considered for the FDIR architecture. One is a centralised
architecture where the key FDIR mechanism, in particular these implemented in
hardware shall be centralised and a classical prime and redundant hardware FDIR
handling system is implemented with a prime and a redundant node. The other FDIR
approach is a distributed one, where the FDIR handling mechanism is relocated on
each node of every type. The distributed FDIR then relies on some arbitration or
majority voting mechanism to reach consensus on the FDIR actions. It is anticipated
that the software based FDIR will be distributed in either case.

The FDIR element of this project will be in two parts: the first is to develop an FDIR
strategy which takes into account the modular architecture of the proposed system and
the reliability characteristics built into the SpaceWire network standards. This work
will culminate in an FDIR analysis tool which is intended to be implemented using
the UML modelling language. The tool will include algorithms which can take as its
input a definition of the system in terms of the type and number of nodes as well as
how they are interconnected together via the SpaceWire network. The input will also
specify the data paths and rates as well as constraints on commanding latency and
priority. The tool will analyse the system and produce a table of FDIR actions which
is used to define the conditions and paths of transitions for a state machine which shall
be at the heart of the FDIR handling algorithm.

The FDIR handling algorithm which shall be implemented as part of the GenFAS
software shall also be modelled in UML. The combined FDIR table generation, FDIR
algorithm handling model and system definition shall be used to create a sophisticated
FDIR model of the system which will enable the user to evaluate and optimise the
system’s architecture and performance when exposed to various scenarios of failure
events.

As mentioned in the introduction, a major part of the analysis, and testing shall be
focused on the reliability of the SpaceWire network when used within the MARC
framework to handle the distribution of critical commands. An assessment shall be
made to enable system architects to make a decision on whether such a system can
rely on the SpaceWire network alone for distributing commands and their responses
within a time critical embedded system.

5 REFERENCES
1. W.Gasti, “Advanced Robust Processing Architecture “ARPA” for Modular

Architecture for Robust Computing “MARC””, TEC-ED/WG/2005-12, July 2006.

2. W.Gasti, “Generic Fault-tolerant Software using SOIS “GenFAS” for Modular
Architecture for Robust Computing “MARC””, TEC-ED/WG/2005.14, July 2006.

3. “Software – Part 1: Principles and Requirements”, ECSS-E-40-1B, November
2003.

4. “Telemetry and Telecommand Packet Utilization”, ECSS-E-70-41A, January
2003.

5. “Spacecraft Onboard Interface Services – Informational Report”, CCSDS 850.0-
G-1, Green Book, Issue 1.0, Washington, D.C, June 2007.

6. “SpaceWire – Links, Nodes Routers and Networks”, ECSS-E-50-12A, January
2003.

7. J.Stevens, D.Durrant, S.Fowell, “Generic Architectures for Future Mass
Memories”, DASIA 2005 – Data Systems in Aerospace, Edinburgh, UK, May
2005.

8. “Remote Memory Access Protocol”, ECSS-E-50-11, Draft E, December 2005.

