SpaceWire Router ASIC

Steve Parkes, Chris McClements
Space Technology Centre, University of Dundee

Gerald Kempf, Christian Toegel
Austrian Aerospace

Stephan Fisher
Astrium GmbH

Pierre Fabry, Agustin Leon
ESA, ESTEC
SpW-10X Architecture

SpW-10X

- SpW Port 1
- SpW Port 2
- SpW Port 3
- SpW Port 4
- SpW Port 5
- SpW Port 6
- SpW Port 7
- SpW Port 8

Routing Switch

Parallel Port 9
Parallel Port 10
Time-Code Interface
Configuration Port 0
Routing Table
SpaceWire Ports

- SpaceWire compliant
- Data Signalling Rate
 - 200 Mbits/s maximum
 - Selectable 2 – 200 Mbits/s
- Each SpaceWire port can run at a different speed
- LVDS drivers and receivers on chip
 - Avoids size, mass, cost of external LVDS chips
- Receiver auto-start mode
- Power control
 - Each SpaceWire port can be completely disabled
 - including clock tree
 - LVDS can be tri-stated with auto-enable
 - Links can be held disconnected until there is data to send
Parallel Ports

- Parallel ports to support connection to
 - Processors
 - Simple logic
- 8-bit data + control/data flag
- FIFO type interface
- Operate at speed of SpaceWire links
 - i.e. 200 Mbits/s
Routing Switch

- Switches packet being received to Appropriate output port
- SpaceWire and Parallel ports treated the same
- Non-blocking
 - If the required output port is not being used already
 - Guaranteed to be able to forward packet
 - Rapid packet switching times
 - Low latency
- 3.2 Gbits/s maximum throughput
- Worm-hole routing
Configuration Port

- Used to configure router device
 - Routing tables
 - Link speeds
 - Power states
 - Etc

- Used to read router status

- RMAP Remote Memory Access Protocol

- Used for reading and writing configuration port registers

- Router can be configured over
 - Any SpaceWire port
 - Any Parallel port
Time-Code Port

- Sends and receives time-codes

- Tick-in
 - Internal time-counter incremented and time-code sent
 - Or
 - Value on the time-code input port is sent as a time-code

- Tick-out
 - Indicates valid time-code received
 - Value of time-code on time-code output port
Status/Configuration Interface

- On power up holds some configuration information
- Thereafter provides status according to four address lines
- 0-10: Port status
 - 0: Configuration port
 - 1-8: SpaceWire port
 - 9-10: Parallel port
- 11: Network discovery
 - Return port
 - This is a router
- 12: Router control
 - Enables and timeouts
- 13: Error active
- 14: Time-code
- 15: General purpose
 - Contents of general purpose register
 - Settable by configuration command
Router ASIC Performance

- **ASIC**
 - Implementation in Atmel MH1RT gate array
 - Max gate count 519 kgates (typical)
 - 0.35 µm CMOS process

- **Radiation tolerance**
 - 100 krad
 - SEU free cells to 100 MeV
 - Used for all critical memory cells
 - Latch-up immunity to 80 MeV/mg/cm²

- **Performance**
 - SpaceWire interface baud-rate 200 Mbits/s
 - LVDS drivers/receivers integrated on-chip

- **Power**
 - 5 W power with all links at maximum data rate
 - Single 3.3 V supply voltage

- **Package**
 - 196 pin ceramic Quad Flat Pack 25 mil pin spacing
ESA SpaceWire Router Performance

SpaceWire Router Latency and Jitter Measurements (Bit rate = 200Mbits/s)

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching Latency</td>
<td>T_{SWITCH}</td>
<td>133.3</td>
<td>ns, max</td>
</tr>
<tr>
<td>Router Latency – SpaceWire to SpaceWire port</td>
<td>T_{SSDATA}</td>
<td>546.6</td>
<td>ns, max</td>
</tr>
<tr>
<td>Router Latency – SpaceWire to External port</td>
<td>T_{SEDATA}</td>
<td>316.6</td>
<td>ns, max</td>
</tr>
<tr>
<td>Router Latency – External to SpaceWire port</td>
<td>T_{ESDATA}</td>
<td>363.3</td>
<td>ns, max</td>
</tr>
<tr>
<td>Router Latency – External to External port</td>
<td>T_{EEDATA}</td>
<td>166.6</td>
<td>ns, max</td>
</tr>
<tr>
<td>Time-code Latency – SpaceWire to SpaceWire port</td>
<td>T_{SSTC}</td>
<td>409.3</td>
<td>ns, max</td>
</tr>
<tr>
<td>Time-code Latency – SpaceWire to External port</td>
<td>T_{SETC}</td>
<td>316.6</td>
<td>ns, max</td>
</tr>
<tr>
<td>Time-code Latency – External to SpaceWire port</td>
<td>T_{ESTC}</td>
<td>359.9</td>
<td>ns, max</td>
</tr>
<tr>
<td>Time-code Jitter</td>
<td>T_{TCJIT}</td>
<td>116.6</td>
<td>ns, max</td>
</tr>
</tbody>
</table>

[1] Note all figures are worst case

Above figures derived from simulation
Applications – Standalone Router

Router – Instrument 1
 High Rate

Router – Instrument 2

Router – Instrument 3

Router – Instrument 4

Router – Instrument 5

Router – Memory

Router – Processor
Applications – Embedded Router

- **Instrument 1**
 - High Rate

- **Instrument 2**

- **Instrument 3**

- **Instrument 4**

- **Instrument 5**

- **Router**

- **Memory**

- **Processor**

- **Prime**

- **Router**

- **Memory**

- **Processor**

- **Redundant**
Applications – Node Interface

High Rate Instrument → Instrument Control FPGA → Router
Applications – Node Interface

- Memory Banks
- Memory Control FPGA
- Router
Applications – Node Interface

- Processor
- I/O Control FPGA
- Memory
- Router
Router Prototype Implementations
Router Prototype Implementations
Router Prototype Implementations

EADS ASTRIUM
SPACE WIRE ROUTER SN: 03

GND +5V

EX_DATA_1 TIMECODE UF EX_DATA_0

RESET TIME CTR-RST

LINK 4 LINK 3 LINK 0 LINK 1 LINK 7 LINK 2 LINK 6 LINK 5
Router Prototype Implementations
Router Prototype Implementations
SpW-10X Development System

- Boxed
- 6U Rack Mount
Team

- **University of Dundee**
 - Design and Testing

- **Austrian Aerospace**
 - Independent VHDL Test Bench
 - Transfer to ASIC technology

- **Astrium GmbH**
 - Functional Testing

- **Atmel**
 - ASIC Manufacture

- **STAR-Dundee**
 - Support and Test Equipment
Conclusions

- ESA router has extensive capabilities
- Suitable for a wide range of applications
- Independently tested
- Extensively validated
- Full range of support services available
 - Evaluation boards
 - 6U and boxed
- Prototypes due November 2007
- Atmel AT7910E