

Network Management and Configuration using RMAP

Peter Mendham, Stuart Mills, Steve Parkes Space Technology Centre University of Dundee

Introduction

SpaceWire device interoperability

Need a standard method for device configuration

Proposal to use RMAP

- Implications
- Provide support for "standard" features
- Summary

Relationship with Plug-and-Play

- Very strong overlap
- Particularly in the last few weeks
- This paper documents our perspective
- Starting point:
 - Configuration space and use of RMAP from UoD router
- Indebted to SpaceWire PnP working party

Interoperability

University of Dundee

- Methods for managing and configuring networks are vendor specific
- Useful to have a standard way to handle the common features of SpaceWire devices
- Permit greater level of interoperability
- Potential for network and device discovery

University of Dundee

Interoperability Use Cases

Test and Development Equipment
Promote ease of use

Ground Equipment

Standard methods for integration and test

Flight Equipment

Software and hardware reuse

Standardise a Protocol

- Configuring routers
- Configuring the state of links
- Checking the status of links
- Interrogating nodes

Space Technology Centre University of Dundee

RMAP as a Standard Protocol

- Network Management and Configuration operations are largely get/set
- RMAP provides basic read/write operations
- RMAP is flexible, fully featured and relatively lightweight
- Read/write commands operate on 40-bit address field with no further semantics
- "Address" field can therefore be interpretted in any way

Interpretation of Address Field

Split the address field into three parameters – Command

- Index
- Byte

Top two bytes are unused

Protocol Identifier

- RMAP is being given specific semantics
- Not appropriate to use RMAP protocol ID
- Need to use new protocol ID
- No clear way to identify RMAP is being used
- Need consistent way to address configuration space of both routers and nodes
- Nodes must also support leading zero
 - Will be discussed elsewhere

Space Technology Centre University of Dundee

Specifying a Return Address

- Read and acknowledged write require return address
- Not known if querying a router through an unknown link
- RMAP packet always has source logical address field
- If this is zero, the port of the request is added to the return address

"Standard" SpaceWire Tasks

- Interrogating and indentifying devices
- Link status monitoring
- Link state and speed configuration
- Router arbitration control
- Routing table configuration

Device Information

- Vendor ID
- Product ID
- Device class
- Device version
- Device type: node/router
- Number of ports
- Maximum write packet size
- Device identifier
 - Network unique
 - May be read-only or read/write
- Bit map of active ports
 - Ports in the run state

Link Status/Link Information

- Link errors:
 - Disconnect
 - Parity
 - Escape
 - Transmit credit
 - Receive credit
 - Character sequence
- Maximum supported speed

Link State

Configure link state:

- Idle
- Start
- Auto-start
- Disable
- Set link speed
 - Device chooses nearest supported speed

Router Arbitration

University of Dundee

Resolves competition for output port

- Standard suggests a number of different approaches to arbitration
 - E.g. round-robin, random, fixed
- Also permit priority-based routing
 - Logical address
 - Arrival port

Permit valid combinations, applied in order:

- Logical address
- Arrival port
- Arbitration method (round-robin, etc.)

Routing Table

Assigns ports to addresses

- Multiple assignments gives:
 - Alternatives (Group Adaptive Routing)
 - Multiple forwarding (Packet Distribution) (except to arrival port)
- Permits GAR/PD on path addresses
- Set priority associated with address

Summary

- Interoperability
 - Ease of use
 - Better testing facilities
 - Promotes hardware and software reuse
- Standard protocol
- RMAP-based
 - Simple semantics of RMAP can be extended
 - New protocol ID should be used
- Support the "standard" features of SpaceWire
- Features are optional, just provides access to existing hardware facilties

The Future

 Work closely with the SpaceWire plug-andplay group

- Work closely with CCSDS plug-and-play group
- Continue to develop facilities
- Simulation and testing