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Project team

• Systems Engineering & Assessment Ltd (SEA)

– Definition of the system hardware architecture

– Selection of component technologies

– Design, manufacture and test of a demonstrator system

– Implement hardware FDIR functions

• SciSys UK Ltd

– Develop the Generic Fault-tolerant Architecture using SOIS 
(GenFAS) software framework

– Implement software FDIR functions

• EADS Astrium Ltd

– Definition of FDIR requirements, partitioning and algorithms

– System analysis and verification of demonstrator performance

– Activity coordination



MARC Aims

• Define a modular architecture based on a SpaceWire network that is 

scalable to meet future mission needs

• Design, manufacture and test a representative demonstration system 

comprising:

– Processing modules, Mass Memory (RMAP interface) and active 

SpW backplane

– New flight capable hardware technologies (eg LEON2, SpW router)

– COTS Power PC to demonstrate network load handling

– SOIS based software and related services to ECSS-E-40

• Demonstrate the essential features of a heterogeneous, fault tolerant, 

high availability distributed avionics system
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GenFAS features

• Decentralised, distributed Onboard software

– May be located on any processor

– Telecommands routed based on APIDs

• Decentralised, distributed access to all instruments and transducers via a 

SpaceWire network

• Advanced Mass Memory architecture

– Supporting a file system, packet store, FIFO buffer etc.

• Fault tolerance based on “spare” capability, rather than full redundancy

– Applications are linked together into a validated software build

– Build information stored in a safeguarded context area

– Software builds are allocated by a configuration manager to processors

– FDIR manager detects failures and initiates re-deployment of the software 

build to a spare processor
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FDIR analysis and performance

• Define failure scenarios, detection strategies and levels of autonomy

• Partition FDIR functions into onboard hardware and software or TM/TC actions

• Define FDIR architecture as centralised (single node), distributed FDIR 

(multiple nodes with majority voting) or a combination of both

• Create an FDIR analysis tool in UML to derive the FDIR actions

• Create an FDIR model of the system incorporating the FDIR algorithm using 

UML

• Evaluate and optimise the system architecture performance when exposed to 

different failure scenarios

• Demonstrate the FDIR algorithm running on the MARC demonstrator, handling 

failures

• Assess the performance and reliability of the SpaceWire network to handle 

critical commands/telemetry and hence act as an alternative to Mil-Std-1553B


