
Modular Architecture for Robust 

Computing (MARC)

Presented by Alan Senior

17th September 2007

at the

International SpaceWire Conference 2007



Project team

• Systems Engineering & Assessment Ltd (SEA)

– Definition of the system hardware architecture

– Selection of component technologies

– Design, manufacture and test of a demonstrator system

– Implement hardware FDIR functions

• SciSys UK Ltd

– Develop the Generic Fault-tolerant Architecture using SOIS 
(GenFAS) software framework

– Implement software FDIR functions

• EADS Astrium Ltd

– Definition of FDIR requirements, partitioning and algorithms

– System analysis and verification of demonstrator performance

– Activity coordination



MARC Aims

• Define a modular architecture based on a SpaceWire network that is 

scalable to meet future mission needs

• Design, manufacture and test a representative demonstration system 

comprising:

– Processing modules, Mass Memory (RMAP interface) and active 

SpW backplane

– New flight capable hardware technologies (eg LEON2, SpW router)

– COTS Power PC to demonstrate network load handling

– SOIS based software and related services to ECSS-E-40

• Demonstrate the essential features of a heterogeneous, fault tolerant, 

high availability distributed avionics system



As above

Power Supply

Power switching

and

Watchdog

Active Backplane

As above

Spare PCB slot

Processor 1

Processor 2

Mass Memory 1

Mass Memory 2

Atmel

LEON2
16Gb RAM

Actel

ProASIC 3

FPGA

Atmel

3 channel

SpaceWire

ASIC

Actel

ProASIC 3

FPGA

64Gb RAM

64Gb FLASH

Spare PCB slot

Spare PCB slot

Spare PCB slot

SpaceWire port

8 Port

Router

8 Port

Router

8 Port

Router

8 Port

Router

SpaceWire

USB Brick

PC configured with

software

development tools

and a fault injection

test application

Demonstrator system rack

1 Spare

SpaceWire port

1 Spare

SpaceWire port

2 Spare

SpaceWire ports

2 Spare

SpaceWire ports

Mains power in

Monitoring LEDs

Control switches

Boot PROM

Preliminary

MARC

Demonstrator

Hardware

Reconfiguration

controller

LEON2

debug port

SpaceWire port

COTS

PowerPC



GenFAS features

• Decentralised, distributed Onboard software

– May be located on any processor

– Telecommands routed based on APIDs

• Decentralised, distributed access to all instruments and transducers via a 

SpaceWire network

• Advanced Mass Memory architecture

– Supporting a file system, packet store, FIFO buffer etc.

• Fault tolerance based on “spare” capability, rather than full redundancy

– Applications are linked together into a validated software build

– Build information stored in a safeguarded context area

– Software builds are allocated by a configuration manager to processors

– FDIR manager detects failures and initiates re-deployment of the software 

build to a spare processor



SOIS Application Support Layer

File ServicesCommand & Data Acquisition 

Services

SOIS Sub-Network Layer

Physical Layer

Network Initialisation 

& Configuration
CPU RM Timer UART

SFGM

SpaceWire 

TimeCode 

Register

EDAC Watchdog

Data Link Layer SpW Driver

Protocol Multiplexing Prioritisation

Packet 

Transfer 

Service

Get/Set

Service

Memory 

Access 

Service

Time 

Distribution 

Service

Device 

Discovery 

Service

Test 

Service

SOIS Transfer Layer

Message 

Transfer 

Service

Device 

Access 

Service

Device Data 

Pooling 

Service

Device 

Virtualisation 

Service

File 

Transfer 

Service

File 

Management 

Service

File 

Access 

Service

Time 

Access 

Service

N
e

tw
o

rk
 M

a
n

a
g

e
m

e
n

t S
e

rv
ic

e
s

H
a

rd
 R

e
a

l-T
im

e
 O

p
e

ra
tio

n
 S

y
s
te

m
B

S
P

B
o

o
t L

o
a

d
e

r

Transport Protocol

Network Protocol

System Functions and

Common Application Services

Layer

Mode 

Manager

PUS 

Services

FDIR 

Manager

Configuration 

Manager

User Applications

Software architecture



FDIR analysis and performance

• Define failure scenarios, detection strategies and levels of autonomy

• Partition FDIR functions into onboard hardware and software or TM/TC actions

• Define FDIR architecture as centralised (single node), distributed FDIR 

(multiple nodes with majority voting) or a combination of both

• Create an FDIR analysis tool in UML to derive the FDIR actions

• Create an FDIR model of the system incorporating the FDIR algorithm using 

UML

• Evaluate and optimise the system architecture performance when exposed to 

different failure scenarios

• Demonstrate the FDIR algorithm running on the MARC demonstrator, handling 

failures

• Assess the performance and reliability of the SpaceWire network to handle 

critical commands/telemetry and hence act as an alternative to Mil-Std-1553B


