Space Cube 2
an Onboard Computer based on Space Cube Architecture

Tadayuki Takahashi
Institute of Space and Astronautical Science (ISAS/JAXA)

Takeshi Takashima (JAXA),
Seiichi Fukuda (JAXA),
Satoshi Kuboyama (JAXA),
Masaharu Nomachi (Osaka U.),
Yasumasa Kasaba (Tohoku U.),
Takayuki Tohma (NEC),
Hiroki Hihara (NTS),
Shuichi Moriyama (NEC Soft),
Toru Tamura (NEC Soft)
and Space Wire User’s Group in Japan
Space Wire in Japan

After many discussions/experiments
We have decided to choose

Space Wire

as a standard to be implemented in future scientific satellites.

Next Step is to define a standard architecture for scientific satellites, which often require different specifications of how the components are linked and controlled, depending on their scientific objectives.

Bepi Colombo / MMO (2013) X-ray Astronomy - NeXT -(planned 2013)
Small Science Satellite Project in Japan
plan to launch 3 satellites in 5 years

400 kg in low earth orbit
Launch 2011

Other Candidates for 2012-2015

TOPS
ERG
DEOS

Small science missions have to be realized as quick as possible:
How we can develop space crafts in a short time, without losing reliability, with reasonably low cost...

Modular Structure with SpW interface would be the key
The Goal

1. Modularity, Flexibility, Scalability (Applicable to Med/Small satellites)
2. Accessibility (RMAP)
3. Re-usability
4. Redundancy

Distributed system

- Intelligent SpW node (Space Cube)
- SpW Router
- non-Intelligent SpW node with SpW I/F chip
Define “Standard Computer” as an intelligent SpW node. → *Space Cube*

= a minimum set of OnBoard Computer

```
Space Cube Architecture
```

- CPU
- FPGA
- Flash ROM
- SRAM
- SDRAM for Data Recorder

Support Real Time OS, such as TRON/T-Kernel
Space Cube 1

Compact Space Wire based Computer
Developed to promote SpW based system. Turns out to be very useful for the demonstration & the education purposes and also “simulating” Space Wire based distributed system.

- 3 SpW ports
- Video & USB & Ethernet I/F
- ITRON Real Time OS & Linux
- Set of I/O modules for real applications on ground

By ISAS/JAXA & Shimafuji.
Space Cube 2
Flight Computer for Space (JAXA/NTS)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>HR5000 (64 bit, 32 MHz Operation)</td>
</tr>
<tr>
<td>Space Wire I/F</td>
<td>3ch</td>
</tr>
<tr>
<td>System Memory</td>
<td>2 MB Flash Memory</td>
</tr>
<tr>
<td></td>
<td>4 MB Burst SRAM</td>
</tr>
<tr>
<td></td>
<td>4 MB Asynchronous SRAM</td>
</tr>
<tr>
<td>Data Recorder Memory</td>
<td>1 GB Asynchronous SDRAM</td>
</tr>
<tr>
<td></td>
<td>1 GB Flash Memory</td>
</tr>
<tr>
<td>Size</td>
<td>71 (W) x 220.5 (D) x 170.5 (H)</td>
</tr>
<tr>
<td>Weight</td>
<td>1.9 kg</td>
</tr>
<tr>
<td>Power</td>
<td>7 W</td>
</tr>
</tbody>
</table>

Stack Configuration
Can add more modules

HR5000 micro controller and Burst SRAM
Max 200 MHz
Space Cube 2 on **SDS-1** (JAXA’s Engineering Piggyback Satellite)

Launch 2008-Aug

- SDS-1 carries
 SWIM (SpaceWire Interface test Module (JAXA/NTS/MHI))
 SpaceCube 2 and a sub-module for small experiments

Test Mass

Small Experiments
(Prototype for future)
Gravitational Wave Exp.
by U.Tokyo Group

100 kg

Space Wires

1.9 kg

3.5 kg

80mm
More for future SpW-based satellites

Space Card_MHI
- Based on Space Cube Architecture
- SOI-based New RISC-type 32bit CPU (for Space)
- Very Compact (best for small satellites)
- Will be used as computers for mission components in the NeXT (New X-ray Telescope) mission.

Router ASIC
(NEC&JAXA)
- 15 SpW ports

SpW I/F ASIC
(NEC&JAXA)
- parallel bus + DMA

MHI&JAXA
(see MHI booth)
Summary

• Space Wire standard has been adopted by ISAS for science missions (see also Matsuda et al. this conf.).

• We define Space Cube architecture to clarify minimum specifications as a standard OBC.

• The combination of Space Cube 1 on the ground and Space Cube 2 in the space provides us with a user-friendly platform for the development of satellites (see Yuasa et al, Odaka et al.). Space Cube 2 will be used in a series of small scientific satellites in ISAS and also in mid-scale satellites such as NeXT.

• Further development includes Space Card, Router Chip and Space Wire I/F chip.