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ABSTRACT 
SpaceWire aims at becoming a candidate data-handling network for use onboard 
spacecraft, which could bring modularity and scalability to future onboard data 
processing systems. The use of routers brings several advantages as flexibility and 
scalability while the number and length of links can be decreased. However, the 
routers introduce constraints and limits in term of overall data throughput and latency. 
The increase of the link speed can push back the limits but do not solve the issue. 
Several other ways for improvement need to be explored: new router arbitration 
schemes, new multiplexer devices, implementation of dedicated communication 
protocols, the development of a methodology and associated tools for network 
analysis are possible ways for improving the scope of possible future usage of 
SpaceWire networks onboard spacecrafts. 

1 SPACEWIRE EXPERIENCE 
Astrium gain a strong experience on SpaceWire by leading several R&D studies and 
by contributing to the development of the main relevant building blocks for future 
space systems.  

A SpaceWire codec IP core [1] has been developed and connected to Leon2 and 
Leon3 IP cores. It has been used in many studies making possible the identification of 
improvements. These improvements are presently under development and the new 
version of the IP core will be integrated in the SCOC3 system. 

A3M [2] used point-to-point communication between three Leon 
based computers to implement and validate a safe and reliable 
distribution system. As an additional result, A3M has shown that 
SpaceWire disconnection detection can be used to implement fast 
failure detectors. 

GAMMA [3] used a SpaceWire network including an eight ports 
router to implement and validate a distributed mass memory 
architecture in which several multi-threaded Leon based users can 
simultaneously access one or several mass memory modules. 
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 PADAPAR [4] is an Astrium Satellites 
internal study that aims to define a 
generic architecture for future payloads 
that can match mid-term needs while 
optimizing the development process 
through standard building blocks 
definition. The main building blocks are 
implemented and interconnected by 
means of a SpaceWire network.  

 

These studies and developments have made possible a fine characterization of the 
SpaceWire and make possible the confirmation of SpaceWire advantages and 
drawbacks. 

2 IDENTIFICATION ADVANTAGES AND DRAWBACKS 
The advantages and drawbacks of the SpaceWire can be easily identified in the ECSS 
standard [5] and are clearly confirmed by test. The advantages that are, among others, 
a great simplicity, the ease to use, a high data rate and a low consumption are not 
detailed in this short paper that prefers to focus on drawbacks in order to request or 
propose ways for improvement. 

From mechanical point of view, with a maximum of 80 grams per meter, the 
SpaceWire links can be considered as heavy. This is weight can become an important 
problem when the SpaceWire is used in a point-to-point configuration. The use of 
routers can help to reduce the number and the length of the links. However, the 
routers themselves should be redounded.  

The use of routers brings other numerous advantages as a great flexibility and 
scalability to the SpaceWire networks. However, the routers introduce constraints and 
limits in term of overall data throughput and latency. The overall data throughput of 
the system is reduced as soon as one of a device is not working at the maximum 
speed. A latency is introduced by each crossed router. The value of this latency 
mainly depends on the number and the size of all the messages that are transferred to 
a same output port. The phenomenon is amplified by the wormhole routing when 
several routers are crossed. If the worst case of data throughput and latencies can be 
easily determined, it can also be very restrictive at the time of the definition of a 
system. The increase of the link speed, the restriction of the size of messages 
exchanged and the use of the group adaptive routing can push back the limits but do 
not solve the issue. 

Of course, these problems are not specific to SpaceWire and exist in other packet 
switched networks as Ethernet and explain, at least partly, why Ethernet is not used in 
real-time space systems. 
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 3 POSSIBLE WAYS FOR IMPROVEMENT 

3.1 DEVICES 

The implementation of the arbitration policy in SpaceWire routers is generally limited 
to round-robin. The implementation of new arbitration policies (e.g. priority based), 
should make possible to extend the use of the SpaceWire networks to command and 
control. The implementation of configurable traffic controller in routers is another that 
could be considered. 

The SpaceWire standard defines the broadcast and multicast distributions. However, 
no existing SpaceWire device presently implements one of these distribution 
mechanisms. When managed at the lowest level, these two distribution modes can be 
very useful to implement safe and distributed systems. 

Multiplexer and high data rate devices should make possible the decrease of the 
overall latency while optimizing the data throughput by the supporting the 
concentration of the data traffic generated by the slowest units in the system. In 
addition, the number of links required to establish the connections would decrease. 

3.2 PROTOCOLS AND STANDARD 

New protocols are required to ensure the time constraints of applications. This 
approach has been followed with success on the Ethernet standard and is at the origin 
of AFDX [6] used on civil and military aircrafts as the Airbus A380 and A400M. 
Several time-triggered protocols could be envisaged as TTP [7], FlexRay [8] and even 
isochronous or asynchronous protocols as the one studied within the A3M activities. 

The definition of new protocols that match the specific constraints of the space 
application must de defined. These protocols must comply with the low-level layers of 
the space communication networks as SpaceWire and take into account the needs of 
space applications. Of course, these protocols must also be compliant with the 
CCSDS SOIS standards. 

3.3 TOOLS 

The support tools must ease the definition, analysis and validation of system based on 
SpaceWire networks by taking into account the characteristics of all its components. 
Such tools exist for other standard networks (e.g. OpNet) and could be configured to 
SpaceWire. The possibility to mix simulation and connection of real hardware will be 
an asset. 

4 CONCLUSION 
The SpaceWire standard must remain as simple and efficient as possible. It must serve 
as the basis for the development of new devices, high-level protocols and support 
tools. The new devices and protocols should ensure the time constraints of critical 
applications and minimize the latency of the messages they exchange. The support 
tools must ease the definition and validation of system based on SpaceWire networks 
by taking into account the characteristics of all its components. 
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ABSTRACT 
A very important task in developing SpaceWire interconnections is the development of the 
simplex mode. Reducing number of lines is a good solution for working with devices, which are 
not designed for working in full duplex. The simplex mode also reducing the number of lines, 
thus reducing square and weight, which is very useful on board of spacecraft. For example, 
simplex mode can be used working with video camera, the block will only receive information 
from camera. Simplex mode can be also used for control the block, for example moving source 
of light etc. All data will be transmitted using one Tx/Rx pair instead of two, thus decreasing the 
cost of the cable. 
 
The SpaceWire controller can work in two possible directions of the simplex mode – 
transmitting and receiving. Transmitting part sends symbols due to standards and from time to 
time use the special mode of reconnection. The receiving part establishes connection and detects 
errors. The FCT symbols are not sending, so the receiving part is always ready to receive the 
symbol of data. 
 
Due to changing the number of lines, however, several parts of the standard SpaceWire were 
changed. Sending FCT symbols for reserving eight words of buffer were not possible, so the 
credit system was not used. The problem of connection is very sufficient, transmitting part 
doesn’t know if connection is established. If an error occurred during transmission, the receiver 
part was sent to reset state and after reset it had to establish connection again, whereas the 
connection had to be established on speed 10 MHz. These problems are solved in our SpaceWire 
controller. 

113



 

 

_____________________________________________________________________ 

 

Simplex mode is designed for one-side transmission or receiving data. This mode let us 
minimize the number of transmitting or receiving cable, reduce the number of gates of the block, 
thus reducing the weight of the whole block. The block with simplex mode included, give us the 
number of advantages, though there are some problems to solve, such as establishing the 
connection, because in normal block connection is established using two directions. The 
crediting system can’t be used as it is in SpaceWire specification. 
Our modification allows to use the simplex mode. Considerable changes in the standart  
SpaceWire were not made. Just one part of the standart Spacewire is modified – state machine. 
The new state machine will help us to use the simplex mode depending on signals designed for 
simplex mode. Using only two new signals – tx_simplex_enabled and rx_simplex_enabled will 
allow us to turn this mode on. If this two signals will not be set to active level – state machine 
will work as an ordinary state machine of the SpaceWire standart. On figure 1 our new state 
machine is listed. 

 
Figure 1. Modified state machine 

 
All modifications of this state machine are made after state “Started”. Also signal Link Enabled 
will be formed a little bit different from original state machine. 
As we mentioned before – there are two types of the simplex mode – transmitting simplex mode 
and receiving simplex mode. Let us examine the behavior of the state machine in two types of 
simplex mode. 
Receiving simplex mode is enabled by setting the active level of signal on line 
rx_simplex_enabled. In this mode the block will only receive data and/or time codes. Firstly 
state Machine will be in ErrorReset State. After 6.4 microseconds the block will go to ErrorWait 
state. After 12,8 microseconds it will be in Ready state. Link Enabled simplex in the receiving 
simplex mode is set only if the Null symbol is received and the AutoStart signal is in active 
level. The LinkStart signal is not used in receiving simplex mode. Thus, after the receiving of the 
NULL symbol the state machine will go to the state Started and then to Connecting. There is no 
sense waiting the FCT symbol in this state, because no data will be sent. So, after the block goes 
to Connecting state it goes to the Run state. In this state the block will be until the signal Link 
Disabled is set, or any other error occurred, like in the original state machine. In conclusion I can 
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say that state machine of the receiving simplex mode is simple – after the Null symbol is 
received and Autostart is set – it goes directly to Run state. 
Transmitting simplex mode is enabled by setting the active level of signal on line 
tx_simlex_enabled. Firstly state Machine will be in ErrorReset State. No errors can be occurred 
in this mode. The only way to go to ErrorReset state is setting the Reset signal or Link Disable 
signal in Run State. After 6.4 microseconds the block will go to ErrorWait state. After 12,8 
microseconds it will be in Ready state. The block will be in this state until the signal Link Start is 
set to active level. In the transmitting simplex mode AutoStart signal is not used. After the signal 
Link Enabled is set to active level – state machine go to Started state. The state machine goes to 
Connecting state at once, because there is no receiving channel. State machine will stay in this 
state for a sufficient time (K*12,8 microseconds). This time can be set by a designer, the only 
condition is that a NULL symbol must be sent on frequency 10 MHz. Such time-consuming state 
is made because the receiving must detect the first NULL. This state also will be used for 
reconnecting, which will be described further. After K*12,8 microseconds the state machine 
goes to Run state. In this sate the transmitter can send data and time codes. FCT codes are not 
sent. In this state the block stays for N*12,8 microseconds. After this time state machine goes to 
Connecting State and the transmitter begin to send only NULL symbols on the frequency 10 
MHz. This period is called the period of reconnecting and is made for the receiving block. If an 
error occurred in the receiving block – the receiving block will go to the ErrorReset state. After 
some time it will go to the Ready State and will start the Connection only if the transmitting 
block will send the NULL symbol. The transmitting part doesn’t know the situation in the 
receiving part. That’s why such periods of reconnection are made. If an error occurred, the 
connection can be established again. Maximum time of reconnection period is 12,8*N+12,8*K 
microseconds. 
In conclusion we can say that if the simplex mode enabled the state machine of the receiving part 
can be in the Run state till doomsday (if no errors occurred), whereas the state machine of the 
transmitting part will be changing its state, moving from Connecting to Run and from Run to 
Connection. 
The FCT signal is not used at all, that’s why on the receiving part the big-sized buffer have to be 
used, or the reading speed from the buffer must be higher than the writing speed from the 
receiving part. 
Siplex mode can be used as the mode of the block, or the can be the block, using just one 
channel, receiving or transmitting. If the block will use only one channel, the size of block will 
be reduced significantly, because the other channel will not be even sinthesized. The use of 
simplex mode will reduce the power consumption of the block, also because the second channel 
will not be working. 
The maximum traffic capacity of the SpaceWire channel is 320 Mbit per second on the 
frequency 400 Mhz. This traffic capacity can be achieved in half-duplex mode (when one 
channel is sending data symbols only and the other – FCT, Time and Null symbols). In full 
duplex mode traffic capacity is reduced to 305 because of the FCT symbols in each channel. 
Because of the period of reconnection the traffic capacity is lower in simplex mode than in half 
duplex mode. On Figure 2 the traffic capacity of the channel in simplex mode (we are using N=8 
and K=1). 
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Figure 3 Traffic capacity in simplex mode (frequency 400 MHz). 
 
The block in state Run is sending Data for a period 102,4 microseconds, and is sending Null 
symbols for 12,8 microseconds. As we can see from practical value – the traffic capacity is not 
going instantly to 0, the transmitter is sending some data, left in transmitting buffer, and after this 
it falls to zero. But the frequency is not 10 MHz, the PLL also can’t set 10 MHz in a moment, 
frequency goes down smoothly. When State machine of the transmitting part goes to state Run – 
traffic capacity also don’t go to maximum because of the PLL. Let us look through average 
statistical value of different modes of transmitting Data. The traffic capacity in simplex mode is 
significantly lower then in other modes  because of the period of reconnection (figure 3). 
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Figure 3. Traffic capacity of the block in different modes 
The more is the period of sending data in simplex node and the less is the period of the 
reconnection – the higher is the traffic capacity, but that will increase the number of data lost if 
an error occurs. Because of this – parameters N and K must be set due to situation. 
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ABSTRACT 
The success of the SpaceWire standard has resulted in the availability of a wide 
variety of SpaceWire devices.  Allowing these devices to inter-operate easily is an 
open-problem with growing importance.  This problem has two different 
manifestations: interoperability in ground and test equipment, where ease of use is the 
main driver; and interoperability of flight hardware where improvements could ease 
both hardware and software reuse and lower costs. 

This paper proposes a standard mechanism for network management and 
configuration of network devices building on the remote memory access protocol 
(RMAP).  The paper argues that RMAP is an appropriate starting point as it layers 
well in a protocol stack, and many vendors have existing RMAP capabilities.  Adding 
network management and configuration features in this way could be a fairly easy 
task for both existing and future SpaceWire equipment. 

1 INTRODUCTION 
Since the publication of the SpaceWire standard by the European Cooperation on 
Space Standardization (ECSS) in January 2003 [1], SpaceWire has emerged as one of 
the main data-handling networks for use onboard spacecraft. It is now being used on 
many ESA, NASA and JAXA spacecraft and by research organisations and space 
industry across the world.  This widespread interest has resulted in the availability of a 
large number of SpaceWire devices, however, there is no standard way to interrogate 
or configure these devices, limiting the extent to which existing hardware can 
interoperate and both hardware and software can be reused between missions.  This 
paper examines what would be required to ensure a basic level of interoperability, and 
proposes a solution using the Remote Memory Access Protocol (RMAP) [2]. 

The next section discusses interoperability, and its implications, for both ground and 
flight.  The outcomes of this discussion serve as a set of requirements for the rest of 
the paper.  The following section gives a brief overview of the RMAP protocol and 
presents the argument for using it here.  The paper then presents the technical details 
of the proposal examining the two different parts of the interoperability problem 
separately: network management and network configuration. 
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 This work has a close relationship with the proposed Plug-And-Play Standard for 
SpaceWire; the penultimate section of the paper clarifies the relationship and presents 
a small amount of historical background.  The final section summarises and concludes 
the discussions. 

2 SPACEWIRE INTEROPERABILITY 
One of the greatest assets of SpaceWire, and perhaps the most important reason for its 
popularity, is its inherent simplicity.  SpaceWire CODECs and routers require 
relatively few gates, saving cost, mass and power.  SpaceWire packets are simply the 
routing addresses, followed by the data cargo and an end of packet marker.  
SpaceWire links are relatively simple; at all times they must be in one of six states, 
furthermore, the standard gives clear indications of the ways these states should be 
controlled.  As part of the standardisation of SpaceWire addressing, the SpaceWire 
standard gives a clear discussion of a many features that routers must, or can, support.  
Despite this, there is no standard way to interrogate, or configure these features.  A 
vendor-agnostic method for managing the standard features of SpaceWire Devices 
would bring a wide range of benefits. 

2.1 GROUND AND TEST EQUIPMENT 

Interoperability standards would provide benefits for ground-based systems in two 
main areas: development and test.  In the first case, a developer may wish to set up a 
SpaceWire network for prototyping and simulation.  It is likely that the network will 
use equipment supplied by a number of different vendors.  Currently, this means that 
vendor specific software, or other mechanisms, must be used to configure each of the 
devices.  Should any network management functions be required, such as detecting 
the status of individual links, or the topology of the network, vendor specific functions 
are again required, in some cases a single operation that involves multiple devices 
may be forced to use multiple software libraries from different vendors, each with 
their own conventions. 

By providing standard methods for the interrogation of SpaceWire networks, test 
equipment can discover network topologies and provide diagnoses on network 
problems in real time.  Such features could be especially useful during final spacecraft 
integration.  With knowledge of vendor-agnostic methods of interrogating routers and 
devices, electrical ground support equipment (EGSE) could identify and pinpoint 
problems with flight devices, and network configuration. 

2.2 FLIGHT EQUIPMENT 

Although a spacecraft is generally a closed system, similar inter-operability problems 
are faced.  If flight devices from multiple vendors are used, vendor specific 
mechanisms must be employed to, for example, configure routing tables.  This limits 
the degree to which software and other spacecraft components can be re-used.  
Standard methods for interrogating a network could permit flight software to easily 
determine the current status of SpaceWire links to diagnose problems or confirm the 
availability of a device, perhaps in response to a mode change.  Utilising a vendor-
agnostic standard for these purposes reduces the amount of testing that must be done, 
lowers risk and increases the amount of reuse possible within, and between, missions. 
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 3 THE REMOTE MEMORY ACCESS PROTOCOL (RMAP) 
The Remote Memory Access Protocol is a simple yet flexible method for querying 
and configuring a SpaceWire device.  RMAP provides commands for: 

• Write 

• Read 

• Read/Modify/Write 

Additionally, RMAP provides support for an 8-bit CRC which may optionally be used 
to check the data contents of a write operation (a verified write).  The source of a 
write command may also request an acknowledgement (an acknowledged write) 
which will return a standard status code.  The two may be combined to form a 
verified, acknowledged write.  A read operation is straightforward, with the reply 
packet containing the requested data. 

Read/modify/write (RMW) operations are slightly more complicated.  An RMW 
packet contains two fields: a data value and a mask value.  The operation first 
performs a read, and responds with the data.  It then uses the mask and data fields to 
perform a write in an implementation specific way. 

All RMAP commands use an address field to specify the data on which to perform the 
operation.  As there are no restrictions on the values in this field, the protocol imposes 
no semantics above the three command types. 

Additionally, RMAP provides: 

• A transaction identifier to permit the tracking of transactions by the host 
requesting the operation.  This requires no extra logic at the device. 

• A destination key, essentially a ‘magic cookie’, included in every command must 
be matched by the device before the operation is allowed to continue. 

Either path or logical addressing may be used with RMAP. 

3.1 BENEFITS OF RMAP 

Read and write operations form the basis for many protocols and, combined with the 
verification and acknowledgement facilities, RMAP represents a versatile lowest layer 
in a protocol stack.  The lack of complex semantics ensures the protocol’s flexibility.  
If facilities, such as transaction identifiers and destination keys, are not required the 
corresponding logic may not be implemented and the overhead in packet size is 
minimal. 

A number of manufacturers and organisations have found RMAP useful and have 
implemented hardware and software solutions for devices and hosts.  Any protocol 
using RMAP as a lower layer would be able to leverage existing intellectual property, 
limiting the risk for adopters of new technology. 
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 3.2 INTERACTION WITH THE PROTOCOL IDENTIFIER 

RMAP works within the proposed Protocol Identification standard [3], which places a 
centrally assigned numerical identifier after the address.  If a logical address is not 
used, a byte of padding (essentially a fake logical address, usually with the value 254) 
must be inserted so that the packet arriving at the device is consistent. 

To configure or manage routers, the standard specifies that port zero is reserved for 
this purpose.  To permit the interrogation of all devices, without a priori knowledge 
of their type, nodes must also respect a packet arriving as if it is destined for port zero.  
In this case a node should recognise the packet as a configuration packet, if it supports 
that feature, or it should discard the packet.  This behaviour has been proposed as an 
alteration to the Protocol Identification standard. 

RMAP has a dedicated protocol identifier of 01h.  Unfortunately, whilst this identifies 
the packet contents as RMAP, it does not describe any semantics imposed on the 
RMAP commands.  For this reason, this proposal uses an alternative protocol 
identifier, which specifies network management and configuration using RMAP. 

3.3 SPECIFYING AN RMAP RETURN ADDRESS 

If a host is sending an RMAP read command to an unknown device in order to, for 
example, determine its type, the host may not know the port number to which it is 
connected.  In this case it is impossible for the host to specify a return address.  To 
solve this problem, we propose that any packet requiring a response which specifies a 
Source Logical Address of zero will have its return address modified to include the 
path out of the port through which the request was received. 

3.4 USE OF RMAP ADDRESS SPACE 

RMAP has a 40-bit address field (including the extended address byte) of which this 
proposal uses only a fraction.  To ease both packet formation and decoding, the 
address parameter is split into three fields, each a byte long.  These form the lowest 
three bytes of the address field; the upper two bytes are not used.  The fields are: 

• A command field, which identifies the structure or table being addressed. 

• An index field, which specifies an entry in a table; this is not used for structures. 

• A byte offset field which permits a read or write command to offset into a 
structure or table entry. 

Addressing is therefore byte-wide in this proposal. 

4 NETWORK MANAGEMENT TASKS 
Network management, in this context, involves a network manager detecting or 
verifying the topology of the network, the devices that are connected, and the status of 
the SpaceWire links that connect them.  This section first reviews the parameters that 
would be useful for network management and then proposes data structures for 
storing the parameters.  In this proposal, all network management parameters are 
read-only. 
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 4.1 DEVICE INFORMATION PARAMETERS 

Device information permits network managers to identify SpaceWire devices, and 
their capabilities.  The device would need to specify the following: 

• Whether the device is a node or a router. 

• The number of ports the device has. 

Additionally, a device may wish to identify itself by specifying: 

• A vendor identifier; centrally assigned to be unique for each vendor. 

• A product identifier, assigned by the vendor. 

• A device class identifier; centrally assigned to describe the function of this device. 

• Version information. 

It may also be important to uniquely identify a device on a network.  This could be 
achieved by specifying: 

• A globally unique device identifier. 

For maximum flexibility, a vendor may decide not to assign this parameter, and to 
allow it to be written to.  For this reason, a device identifier is included in the data 
structures for network configuration (see below). 

An RMAP verified write operation requires the device to store the contents of the 
whole packet so that it can verify the contents against the CRC.  Any practical device 
will have limited buffer space.  A device may therefore wish to specify: 

• The maximum allowed write packet size. 

4.2 LINK STATUS MONITORING PARAMETERS 

For network management, a host may wish to determine the following: 

• The status of all links attached to this device (whether or not they are in the ‘run’ 
state). 

• Whether any errors have been detected on the links. 

• The maximum speed the links may be run at. 

The SpaceWire standard specifically mentions the following errors: 

• Disconnect errors. 

• Parity errors. 

• Escape errors. 
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 • Transmit credit errors. 

• Receive credit errors. 

• Character sequence errors. 

The maximum speed of a link must be greater than or equal to 10 Mbit/s, the start-up 
speed of SpaceWire links. 

4.3 NETWORK DISCOVERY PARAMETERS 

Using the device information presented so far, a host may begin to explore the 
network and determine what devices are present.  To identify the route that the host is 
using to interrogate the device, the device should make available: 

• The port number through which the current request was received. 

4.4 ROUTER INFORMATION PARAMETERS 

During packet routing, routers may use a variety of arbitration mechanisms to 
determine access to an output port between competing packets.  It may choose to use 
priorities for physical ports, logical addresses, or both.  A router should therefore 
specify: 

• The maximum priority that may be used for physical port arbitration. 

• The maximum priority that may be used for logical address arbitration. 

4.5 DEVICE INFORMATION STRUCTURES 

The parameters introduced above are organised into two structures: 

• A device information structure for parameters that are common to both nodes and 
routers. 

• A router identification structure for routers only. 

These structures are shown in Figure 1 and Figure 2 respectively.  The “Active Port 
Bitmask” in Figure 1 identifies which ports are in the ‘run’ state.  Bit 1 set to a ‘1’ 
indicates that port 1 is running.  Bit 0 is not used and is always set to a ‘0’. 

124



 

 

_____________________________________________________________________ 

 

Vendor ID Product ID

Class Version

Reserved Number of PortsPort Number of Request
Max packet size/

device type

Active Ports Bit Mask

031

Maximum Packet Length Reserved = 0
Node (0)/
Router (1)

Bits in Max packet size/device type byte

MSB LSB

 

Figure 1: Device Information Structure 

Reserved Max Port PriorityMax Address Priority

031

 

Figure 2: Router Information Structure 

4.6 PORT STATUS TABLE 

The port status table contains 32 entries, one for each physical port from 0-31.  The 
first entry, referencing the configuration port, is not used.  A port status table entry is 
shown in Figure 3. 

Maximum Link Speed in Mbit/s Reserved Status

031

Bits in status field

Rx Credit Error Tx Credit ErrorChar Seq Error Parity ErrorEscape Error ReservedDisconnect Error

07

Reserved

 

Figure 3: Port Status Table Entry 

5 NETWORK CONFIGURATION TASKS 
During network configuration a host configures the device for operation.  For all 
devices, a host must be able to configure each of the SpaceWire links.  For routers 
only, the host must be able to configure the way in which arbitration is carried out, 
and to set-up the routing table. 

5.1 LINK CONFIGURATION 

To configure a link, a host must be able to: 

• Reset each of the errors in the port status table. 

• Set the state of the link. 

• Set the speed of the link. 
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 The state of a link may be: 

• Idle – if the link is not running, it won’t start; if it is running it will continue to 
run. 

• Start – start the link. 

• Auto-start – listen for NULLs and start the link if they are received. 

• Disable – if the link is not running, it won’t start; if it is running it will be stopped 
immediately. 

The link speed may be set to any value between 10 Mbit/s and the supported 
maximum.  A device may choose to alter the value to the nearest supported speed 
below the one specified. 

For arbitration, routers may need to associate a priority with each link (see below). 

5.2 ROUTER CONFIGURATION 

A routing device may be configured to set the arbitration mode that it uses to arbitrate 
between multiple packets competing for the same output port. 

Using information provided in the SpaceWire standard, the arbitration of packets 
competing for an output port can be decided using a combination of up to three 
techniques, applied in the order specified below:  

1. Address Priority uses the destination address of the received packet.  Arbitration is 
carried out by comparing the priorities assigned to the destination addresses in the 
routing table (see below).  The highest arbitration priority wins. 

2. Port Priority uses the port at which the packet arrives.  Arbitration is carried out 
by comparing the priorities assigned to the arrival port in the port configuration 
table (see below).  The highest arbitration priority wins. 

3. If competition still exists, an arbitration mode can be chosen by selecting a 
arbitration method such as random, round robin, fixed, etc. 

A host should be able to enable and disable these features individually.  If a router 
chooses not to support one or more of these methods the host will not be able to 
enable that feature.  A router must support fixed arbitration as a minimum. 

To enable logical address-based routing, a router must allow a host to associate the 
following with each logical address: 

• One or more physical ports, more to permit group adaptive routing or packet 
distribution. 

• The option to remove the logical address from the packet. 

• The option to enable packet distribution where the packet is forwarded to every 
port in the group rather that only one.  If the arrival port is included on the list the 
packet is only forwarded to other ports. 

• A routing priority. 
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 5.3 PORT CONFIGURATION TABLE 

All devices have a port configuration table with as many entries as the device has 
physical ports.  There is no entry for the configuration port.  Entries are as shown in 
Figure 4. 

Link Speed in Mbit/s Port Priority (Routers Only) Status

031

Bits in status field

Rx Credit Error Tx Credit ErrorChar Seq Error Parity ErrorEscape Error State 1Disconnect Error

07

State 0

 

Figure 4: Port Configuration Table Entry 

The status field is a copy of that given in the equivalent port status stable entry, except 
that writing a ‘1’ to an error bit resets that error.  The two state bits are encoded as 
follows: 

0. Idle 

1. Start 

2. Auto-start 

3. Disable 

The port priority field is reserved for nodes. 

5.4 ROUTER CONFIGURATION STRUCTURE AND ROUTING TABLE 

To configure the arbitration mode on routers, a router configuration structure is 
provided; this is shown in Figure 5. 

Reserved Arbitration Mode

031

Bits in arbitration mode field

Port Priority
Arbitration

Mode 0
Reserved Addr Priority

07

Arbitration
Mode 1

Arbitration
Mode 2

 

Figure 5: Router Configuration Structure 

The arbitration mode field decodes as: 

0. Fixed arbitration 

1. Round-robin arbitration 

2. Random arbitration 
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 All other values are vendor specific. 

The routing table has entries which control the routing of packets for logical addresses 
(see Figure 6).  The most important field is the port association bitmask, which 
indicates the ports that are to be used for routing the selected logical address.  Bit 1 
indicates port 1 and so on.  As routing is not permitted to the configuration port, the 
lowest bit is used to specify address deletion.  A routing table entry is shown in Figure 
6.  An entry is provided for all addresses from 1 to 254. 

Port Association Bitmap
A
D

031

Address PriorityReserved

AD = Address Deletion

P
D

Reserved

PD = Packet Distribution  

Figure 6: Routing Table Entry 

6 RELATIONSHIP WITH THE PROPOSED PLUG AND PLAY STANDARD 
This work has two starting points: the configuration space of the University of 
Dundee router, which is accessed using RMAP; and the proposals produced by the 
Plug-and-Play working party, a sub-group of the SpaceWire Working Group.  The 
current proposal is accessible from the working party’s discussion forum [4].  
Although heavily indebted to the work that the plug-and-play group has done, this 
proposal has a slightly different focus, which is why the term plug-and-play has not 
been used here. 

7 CONCLUSION 
This paper argued the need for a standard method for network management and 
configuration in order to promote interoperability between SpaceWire devices from 
different vendors.  Such interoperability would make equipment easier to use, permit 
operations such as network discovery in a consistent manner and enable higher levels 
of software and hardware reuse.  As a network management and configuration 
protocol is largely based on the semantics of read/write (or set/get), this paper argues 
that RMAP, a protocol with increasing levels of vendor support, would be an 
appropriate starting point.  To permit identification of the semantics imposed by the 
network management and configuration protocol, a distinct protocol identifier should 
be used. 

The paper then identified the key features that could be considered as standard, 
derived from the SpaceWire standard itself, such as link status and speed, and router 
configuration.  Facilities are also provided to permit network discovery. 

This work has derived partially from the University of Dundee router configuration 
space, and partly from the draft specification produced by the SpaceWire plug-and-
play working party.  The next steps for this work are to: consider existing devices, and 
whether any special support is needed; include support for sharing the configuration 
of SpaceWire devices between multiple hosts without introducing conflicts; aligning 
this proposal closer with the work being done by the plug-and-play working party. 
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ABSTRACT 

This paper describes the initial concept of the proposed Plug-and-Play architecture of 

the SOIS area of the CCSDS, and the resulting requirements on the mapping of SOIS 

onto SpaceWire. Firstly, this paper defines the term “plug-and-play” in the scope of 

SOIS and a number of SOIS use cases for “plug-and-play”, so as to derive 

requirements that must be met by a SOIS Plug-and-Play architecture. Secondly, this 

paper proposes a tentative SOIS Plug-and-Play architecture, based on initial analysis 

of the use cases and consideration of existing plug-and-play technologies, e.g. USB 

2.0, IEEE 1451, 1-wire as well as proposals such as those already made for 

SpaceWire. Finally, this paper proposes draft requirements of the mapping of the 

SOIS Plug-and-Play architecture onto SpaceWire. As this is an initial concept paper, 

it is hoped that it will generate debate and feedback on the SOIS Plug-and-Play 

initiative that will, of course, be gratefully received and taken into account. 

1 EXISTING SOIS ARCHITECTURE 

The Consultative Committee for Space Data Standards (CCSDS) [1] was founded in 

1982 by the major space agencies in the world to discuss and define common space 

communications issues, to enhance governmental and commercial interoperability and 

cross-support, while also reducing risk, development time and project costs. 

As part of the CCSDS work, the Spacecraft Onboard Interface Services (SOIS) area is 

developing standards to radically improve the spacecraft flight segment data systems 

design and development process by defining generic services that will simplify the 

way flight software interacts with flight hardware and permitting interoperability and 

reusability both for the benefit of Agencies and Industrial contractors. As part of the 

standardisation process for SOIS, a subnetwork-neutral architecture of services has 
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 been defined [2], as illustrated in Figure 1. Mappings of these services to capabilities 

of specific subnetworks are then defined, e.g. protocols on SpaceWire, MIL-STD-

1553B and CAN. This allows, amongst other benefits, for satellite architectures to be 

re-used across different busses and standardised off-the-shelf devices and subsystems 

to be developed. 
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Figure 1: CCSDS SOIS Architecture 

Of relevance here are the following services: 

• Command and Data Acquisition Services, that provide mechanism for 

commanding of and acquiring data from devices within a spacecraft; 

• Message Transfer Service, that provides transfer of messages between 

software applications within a spacecraft; 

• Packet Service, that provides transfer of packets between data systems
1
 within 

a subnetwork of a spacecraft; 

• Memory Access Service, that provides access to memory locations of a data 

system from another data system within a subnetwork of a spacecraft. 

The first set of standards is currently being reviewed by the various Space Agencies. 

The ECSS are currently developing protocols to provide the mappings onto 

                                                 

1
 Within ISO standards, communication is defined as being between “data systems”, a generic term that 

can be taken, within the SpaceWire context, as mapping onto a node within a SpaceWire network. A 

node is defined as any addressable SpaceWire network entity, be it a processing, IO, or memory 

module, a transducer, an instrument etc. 
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