

SpaceWire Router ASIC

Steve Parkes, Chris McClements Space Technology Centre, University of Dundee

Gerald Kempf, Christian Toegel Austrian Aerospace

> Stephan Fisher Astrium GmbH

Pierre Fabry, Agustin Leon ESA, ESTEC Space Technology Centre University of Dundee

SpW-10X Architecture

University of Dundee

SpaceWire Ports

SpaceWire compliant

- Data Signalling Rate
 - 200 Mbits/s maximum
 - Selectable 2 200 Mbits/s
- Each SpaceWire port can run at a different speed
- LVDS drivers and receivers on chip
 - Avoids size, mass, cost of external LVDS chips
- Receiver auto-start mode
- Power control
 - Each SpaceWire port can be completely disabled
 - including clock tree
 - LVDS can be tri-stated with auto-enable
 - Links can be held disconnected until there is data to send

Space Technology Centre University of Dundee

Parallel Ports

Parallel ports to support connection to

- Processors
- Simple logic
- 8-bit data + control/data flag
- FIFO type interface
- Operate at speed of SpaceWire links
 - i.e. 200 Mbits/s

Routing Switch

- Switches packet being received to
- Appropriate output port
- SpaceWire and Parallel ports treated the same
- Non-blocking
 - If the required output port is not being used already
 - Guaranteed to be able to forward packet
 - Rapid packet switching times
 - Low latency
- 3.2 Gbits/s maximum throughput
- Worm-hole routing

Configuration Port

Used to configure router device

- Routing tables
- Link speeds
- Power states
- Etc
- Used to read router status
- RMAP Remote Memory Access Protocol
- Used for reading and writing configuration port registers
- Router can be configured over
 - Any SpaceWire port
 - Any Parallel port

Time-Code Port

Sends and receives time-codes

ace nology

Tick-in

- Internal time-counter incremented and time-code sent
 Or
- Value on the time-code input port is sent as a time-code

Tick-out

- Indicates valid time-code received
- Value of time-code on time-code output port

Status/Configuration Interface

- On power up holds some configuration information
- Thereafter provides status according to four address lines
- 0-10: Port status
 - 0: Configuration port
 - 1-8: SpaceWire port
 - 9-10: Parallel port
- 11: Network discovery
 - Return port
 - This is a router
- 12: Router control
 - Enables and timeouts
- 13: Error active
- 14: Time-code
- 15: General purpose
 - Contents of general purpose register
 - Settable by configuration command

Space Technology Centre University of Dundee

Router ASIC Performance

ASIC

- Implementation in Atmel MH1RT gate array
- Max gate count 519 kgates (typical)
- 0.35 µm CMOS process

Radiation tolerance

- 100 krad
- SEU free cells to 100 MeV
- Used for all critical memory cells
- Latch-up immunity to 80 MeV/mg/cm²

Performance

- SpaceWire interface baud-rate 200 Mbits/s
- LVDS drivers/receivers integrated on-chip
- Power
 - 5 W power with all links at maximum data rate
 - Single 3.3 V supply voltage
- Package
 - 196 pin ceramic Quad Flat Pack 25 mil pin spacing

ESA SpaceWire Router Performance

SpaceWire Router Latency and Jitter Measurements (Bit rate = 200Mbits/s)

Description	Symbol	Value	Units
Switching Latency	T _{SWITCH}	133.3	ns, max
Router Latency – SpaceWire to SpaceWire port	T _{SSDATA}	546.6	ns, max
Router Latency – SpaceWire to External port	T _{SEDATA}	316.6	ns, max
Router Latency – External to SpaceWire port	T _{esdata}	363.3	ns, max
Router Latency – External to External port	T _{EEDATA}	166.6	ns, max
Time-code Latency – SpaceWire to SpaceWire port	T _{SSTC}	409.3	ns, max
Time-code Latency – SpaceWire to External port	T _{SETC}	316.6	ns, max
Time-code Latency – External to SpaceWire port	T _{ESTC}	359.9	ns, max
Time-code Jitter	T _{TCJIT}	116.6	ns, max
[1] Note all figures are worst case			

Above figures derived from simulation

Applications – Standalone Router

Applications – Embedded Router

Applications – Node Interface

Applications – Node Interface

SpW-10X Development System

Boxed

6U Rack Mount

Team

Centre University of Dundee

University of Dundee

Design and Testing

Austrian Aerospace

- Independent VHDL Test Bench
- Transfer to ASIC technology

Astrium GmbH

- Functional Testing
- Atmel
 - ASIC Manufacture
- STAR-Dundee
 - Support and Test Equipment

Conclusions

- ESA router has extensive capabilities
- Suitable for a wide range of applications
- Independently tested
- Extensively validated
- Full range of support services available
 - Evaluation boards
 - 6U and boxed
- Prototypes due November 2007
- Atmel AT7910E